Proceedings Volume 8930, Ophthalmic Technologies XXIV; 89300K (2014)
https://doi.org/10.1117/12.2036970
Event: SPIE BiOS, 2014, San Francisco, California, United States
We describe a method we call "stripe field imaging" that is capable of capturing wide field color fundus videos and images of the human eye at pupil sizes of 2mm. This means that it can be used with a non-dilated pupil even with bright ambient light. We realized a mobile demonstrator to prove the method and we could acquire color fundus videos of subjects successfully. We designed the demonstrator as a low-cost device consisting of mass market components to show that there is no major additional technical outlay to realize the improvements we propose. The technical core idea of our method is breaking the rotational symmetry in the optical design that is given in many conventional fundus cameras. By this measure we could extend the possible field of view (FOV) at a pupil size of 2mm from a circular field with 20° in diameter to a square field with 68° by 18° in size. We acquired a fundus video while the subject was slightly touching and releasing the lid. The resulting video showed changes at vessels in the region of the papilla and a change of the paleness of the papilla.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Bernhard Hoeher, Peter Voigtmann, Georg Michelson, and Bernhard Schmauss "Non-mydriatic, wide field, fundus video camera", Proc. SPIE 8930, Ophthalmic Technologies XXIV, 89300K (28 February 2014); https://doi.org/10.1117/12.2036970
[1] Cornsweet, T. N., Crane, H.D., “Accurate two-dimensional eye tracker using first and fourth Purkinje images,” Journal of the Optical Society of America, 63 (8), (1973). https://doi.org/10.1364/JOSA.63.000921Google Scholar
[2] Helmholtz, H., “[Beschreibung eines Augenspiegels zur Untersuchung der Netzhaut im lebenden Auge],” A. Foerstnersche Verlagsbuchhandlung, Berlin (1851). Google Scholar
[3] Bour, L. J., Cardozo, N. J. L., “On the birefringence of the living human eye,” Vision Research, 21 1413 –1421 (1981). https://doi.org/10.1016/0042-6989(81)90248-0 Google Scholar
[4] Rassow, B., Wesemann, W., “[Moderne Augenrefraktometer],” Ferdinand Enke, Stuttgart, (1984). Google Scholar
[5] Pomerantzeff, O., Webb, R.H., Delori F. C., “Image formation in fundus cameras,” Invest. Ophthalmol. Vis. Sci, 18 (6), 630 –637 (1979). Google Scholar
[6] Everdell NL, Styles IB, Calcagni A, Gibson J, Hebden J, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Review of scientific instruments, 81 093706 (2010). https://doi.org/10.1063/1.3478001 Google Scholar
[7] Dick, M., Mohr, T., Bublitz, D., „Einrichtung und Verfahren zur Beobachtung, Dokumentation und/oder Diagnose des Augenhintergrundes”, DE 19626443 (Patent), 2005
[8] Ruete T.T.G., “[Der Augenspiegel und das Optometer für practische Aerzte],” Verlag der Dieterichschen Buchhandlung, Göttingen,1852). Google Scholar
[9] Bublitz, D., Müller, L., Mohrholz, U., Mohr, T., Teige, F., “Fundus camera with strip-shaped pupil division and method for recording artefact-free, high-resolution fundus images”, WO 2012/059236 (Patent), 2011
[10] Heacock, G.L., “Portable fundus viewing system for an undilated eye”, US 5861939 (Patent), 1999
[11] Martin, A., Koch, B., “[Digitale Astrofotografie: Grundlagen und Praxis der CCD- und Digitalkameratechnik],” Oculum, Erlangen,2009). Google Scholar
Google Scholar citations
Check Google Scholar for citing papers
Citing works (2 citations)
1. Bernhard Höher, Georg Michelson, Peter Voigtmann et al., "Low-Cost Non-mydriatic Color Video Imaging of the Retina for Nonindustrialized Countries", Teleophthalmology in Preventive Medicine , pg. 51, (2014); doi:10.1007/978-3-662-44975-2_5
Lens.org
2. Radim Kolar, Bernhard Hoeher, Jan Odstrcilik et al., "WBIR - Registration of Image Sequences from Experimental Low-Cost Fundus Camera", Biomedical Image Registration , pg. 174, (2014); doi:10.1007/978-3-319-08554-8_18
Lens.org